y 2 = x 3 − x 2 − 97795265 x + 372268086225 y^2=x^3-x^2-97795265x+372268086225 y 2 = x 3 − x 2 − 9 7 7 9 5 2 6 5 x + 3 7 2 2 6 8 0 8 6 2 2 5
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 97795265 x z 2 + 372268086225 z 3 y^2z=x^3-x^2z-97795265xz^2+372268086225z^3 y 2 z = x 3 − x 2 z − 9 7 7 9 5 2 6 5 x z 2 + 3 7 2 2 6 8 0 8 6 2 2 5 z 3
(dehomogenize , simplify )
y 2 = x 3 − 7921416492 x + 271359670608576 y^2=x^3-7921416492x+271359670608576 y 2 = x 3 − 7 9 2 1 4 1 6 4 9 2 x + 2 7 1 3 5 9 6 7 0 6 0 8 5 7 6
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -97795265, 372268086225])
gp: E = ellinit([0, -1, 0, -97795265, 372268086225])
magma: E := EllipticCurve([0, -1, 0, -97795265, 372268086225]);
oscar: E = elliptic_curve([0, -1, 0, -97795265, 372268086225])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 5680 , 3025 ) (5680, 3025) ( 5 6 8 0 , 3 0 2 5 ) 2.7404584359791493324824804146 2.7404584359791493324824804146 2 . 7 4 0 4 5 8 4 3 5 9 7 9 1 4 9 3 3 2 4 8 2 4 8 0 4 1 4 6 ∞ \infty ∞
( 5691 , 0 ) (5691, 0) ( 5 6 9 1 , 0 ) 0 0 0 2 2 2
( 5680 , ± 3025 ) (5680,\pm 3025) ( 5 6 8 0 , ± 3 0 2 5 ) , ( 5691 , 0 ) \left(5691, 0\right) ( 5 6 9 1 , 0 ) , ( 64255 , ± 16105100 ) (64255,\pm 16105100) ( 6 4 2 5 5 , ± 1 6 1 0 5 1 0 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
58080 58080 5 8 0 8 0 = 2 5 ⋅ 3 ⋅ 5 ⋅ 1 1 2 2^{5} \cdot 3 \cdot 5 \cdot 11^{2} 2 5 ⋅ 3 ⋅ 5 ⋅ 1 1 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
1952353524590599680000 1952353524590599680000 1 9 5 2 3 5 3 5 2 4 5 9 0 5 9 9 6 8 0 0 0 0 = 2 12 ⋅ 3 5 ⋅ 5 4 ⋅ 1 1 12 2^{12} \cdot 3^{5} \cdot 5^{4} \cdot 11^{12} 2 1 2 ⋅ 3 5 ⋅ 5 4 ⋅ 1 1 1 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
14254800421166387776 269055826875 \frac{14254800421166387776}{269055826875} 2 6 9 0 5 5 8 2 6 8 7 5 1 4 2 5 4 8 0 0 4 2 1 1 6 6 3 8 7 7 7 6 = 2 6 ⋅ 3 − 5 ⋅ 5 − 4 ⋅ 1 1 − 6 ⋅ 1 7 3 ⋅ 18 1 3 ⋅ 19 7 3 2^{6} \cdot 3^{-5} \cdot 5^{-4} \cdot 11^{-6} \cdot 17^{3} \cdot 181^{3} \cdot 197^{3} 2 6 ⋅ 3 − 5 ⋅ 5 − 4 ⋅ 1 1 − 6 ⋅ 1 7 3 ⋅ 1 8 1 3 ⋅ 1 9 7 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 3.2092675711038257961334906996 3.2092675711038257961334906996 3 . 2 0 9 2 6 7 5 7 1 1 0 3 8 2 5 7 9 6 1 3 3 4 9 0 6 9 9 6
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.3171727541446952146852867892 1.3171727541446952146852867892 1 . 3 1 7 1 7 2 7 5 4 1 4 4 6 9 5 2 1 4 6 8 5 2 8 6 7 8 9 2
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0595403464966733 1.0595403464966733 1 . 0 5 9 5 4 0 3 4 6 4 9 6 6 7 3 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 6.090368419286497 6.090368419286497 6 . 0 9 0 3 6 8 4 1 9 2 8 6 4 9 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 2.7404584359791493324824804146 2.7404584359791493324824804146 2 . 7 4 0 4 5 8 4 3 5 9 7 9 1 4 9 3 3 2 4 8 2 4 8 0 4 1 4 6
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.13589547875334429484052152529 0.13589547875334429484052152529 0 . 1 3 5 8 9 5 4 7 8 7 5 3 3 4 4 2 9 4 8 4 0 5 2 1 5 2 5 2 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 64 64 6 4
= 2 2 ⋅ 1 ⋅ 2 2 ⋅ 2 2 2^{2}\cdot1\cdot2^{2}\cdot2^{2} 2 2 ⋅ 1 ⋅ 2 2 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 5.9586545785764419930169337565 5.9586545785764419930169337565 5 . 9 5 8 6 5 4 5 7 8 5 7 6 4 4 1 9 9 3 0 1 6 9 3 3 7 5 6 5
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
5.958654579 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.135895 ⋅ 2.740458 ⋅ 64 2 2 ≈ 5.958654579 \begin{aligned} 5.958654579 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.135895 \cdot 2.740458 \cdot 64}{2^2} \\ & \approx 5.958654579\end{aligned} 5 . 9 5 8 6 5 4 5 7 9 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 1 3 5 8 9 5 ⋅ 2 . 7 4 0 4 5 8 ⋅ 6 4 ≈ 5 . 9 5 8 6 5 4 5 7 9
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, -1, 0, -97795265, 372268086225]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, -1, 0, -97795265, 372268086225]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
58080.2.a.r
q − q 3 + q 5 − 2 q 7 + q 9 + 2 q 13 − q 15 + 6 q 19 + O ( q 20 ) q - q^{3} + q^{5} - 2 q^{7} + q^{9} + 2 q^{13} - q^{15} + 6 q^{19} + O(q^{20}) q − q 3 + q 5 − 2 q 7 + q 9 + 2 q 1 3 − q 1 5 + 6 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 2, 2, 5], [46, 1, 43, 0], [3, 4, 8, 11], [100, 37, 33, 100], [1, 4, 0, 1], [13, 4, 26, 9], [1, 0, 4, 1], [129, 4, 128, 5]]
GL(2,Integers(132)).subgroup(gens)
magma: Gens := [[1, 2, 2, 5], [46, 1, 43, 0], [3, 4, 8, 11], [100, 37, 33, 100], [1, 4, 0, 1], [13, 4, 26, 9], [1, 0, 4, 1], [129, 4, 128, 5]];
sub<GL(2,Integers(132))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 132 = 2 2 ⋅ 3 ⋅ 11 132 = 2^{2} \cdot 3 \cdot 11 1 3 2 = 2 2 ⋅ 3 ⋅ 1 1 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 46 1 43 0 ) , ( 3 4 8 11 ) , ( 100 37 33 100 ) , ( 1 4 0 1 ) , ( 13 4 26 9 ) , ( 1 0 4 1 ) , ( 129 4 128 5 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
46 & 1 \\
43 & 0
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
100 & 37 \\
33 & 100
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
13 & 4 \\
26 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
129 & 4 \\
128 & 5
\end{array}\right) ( 1 2 2 5 ) , ( 4 6 4 3 1 0 ) , ( 3 8 4 1 1 ) , ( 1 0 0 3 3 3 7 1 0 0 ) , ( 1 0 4 1 ) , ( 1 3 2 6 4 9 ) , ( 1 4 0 1 ) , ( 1 2 9 1 2 8 4 5 ) .
The torsion field K : = Q ( E [ 132 ] ) K:=\Q(E[132]) K : = Q ( E [ 1 3 2 ] ) is a degree-5068800 5068800 5 0 6 8 8 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 132 Z ) \GL_2(\Z/132\Z) GL 2 ( Z / 1 3 2 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
363 = 3 ⋅ 1 1 2 363 = 3 \cdot 11^{2} 3 6 3 = 3 ⋅ 1 1 2
3 3 3
nonsplit multiplicative
4 4 4
19360 = 2 5 ⋅ 5 ⋅ 1 1 2 19360 = 2^{5} \cdot 5 \cdot 11^{2} 1 9 3 6 0 = 2 5 ⋅ 5 ⋅ 1 1 2
5 5 5
split multiplicative
6 6 6
3872 = 2 5 ⋅ 1 1 2 3872 = 2^{5} \cdot 11^{2} 3 8 7 2 = 2 5 ⋅ 1 1 2
11 11 1 1
additive
72 72 7 2
480 = 2 5 ⋅ 3 ⋅ 5 480 = 2^{5} \cdot 3 \cdot 5 4 8 0 = 2 5 ⋅ 3 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 58080k
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
5280k2 , its twist by − 11 -11 − 1 1 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 3 ) \Q(\sqrt{3}) Q ( 3 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.5808.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.4.2797938671616.20
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.4857532416.5
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.