Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-19353x+958713\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-19353xz^2+958713z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-309643x+61048006\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{7}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(61, 18)$ | $1.0673824816878454875840596007$ | $\infty$ |
$(103, 172)$ | $0$ | $7$ |
Integral points
\( \left(-121, 1292\right) \), \( \left(-121, -1172\right) \), \( \left(-37, 1292\right) \), \( \left(-37, -1256\right) \), \( \left(-9, 1068\right) \), \( \left(-9, -1060\right) \), \( \left(39, 492\right) \), \( \left(39, -532\right) \), \( \left(61, 18\right) \), \( \left(61, -80\right) \), \( \left(103, 172\right) \), \( \left(103, -276\right) \), \( \left(133, 784\right) \), \( \left(133, -918\right) \), \( \left(159, 1292\right) \), \( \left(159, -1452\right) \), \( \left(551, 12268\right) \), \( \left(551, -12820\right) \), \( \left(7019, 584392\right) \), \( \left(7019, -591412\right) \)
Invariants
Conductor: | $N$ | = | \( 574 \) | = | $2 \cdot 7 \cdot 41$ |
|
Discriminant: | $\Delta$ | = | $70810888830976$ | = | $2^{21} \cdot 7^{7} \cdot 41 $ |
|
j-invariant: | $j$ | = | \( \frac{801581275315909089}{70810888830976} \) | = | $2^{-21} \cdot 3^{3} \cdot 7^{-7} \cdot 19^{3} \cdot 41^{-1} \cdot 43^{3} \cdot 379^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3977856380968835507713534157$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3977856380968835507713534157$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.016102601253096$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.4894959541817085$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0673824816878454875840596007$ |
|
Real period: | $\Omega$ | ≈ | $0.60020819121169191031840301132$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 147 $ = $ ( 3 \cdot 7 )\cdot7\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $7$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.9219551259947258101377176145 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.921955126 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.600208 \cdot 1.067382 \cdot 147}{7^2} \\ & \approx 1.921955126\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 3528 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $21$ | $I_{21}$ | split multiplicative | -1 | 1 | 21 | 21 |
$7$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$41$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.1.1 | 7.48.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2296 = 2^{3} \cdot 7 \cdot 41 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 2283 & 14 \\ 2282 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 785 & 14 \\ 903 & 99 \end{array}\right),\left(\begin{array}{rr} 1723 & 1162 \\ 581 & 17 \end{array}\right),\left(\begin{array}{rr} 575 & 14 \\ 1729 & 99 \end{array}\right),\left(\begin{array}{rr} 1149 & 14 \\ 1155 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right)$.
The torsion field $K:=\Q(E[2296])$ is a degree-$88871731200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2296\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 287 = 7 \cdot 41 \) |
$3$ | good | $2$ | \( 287 = 7 \cdot 41 \) |
$7$ | split multiplicative | $8$ | \( 41 \) |
$41$ | nonsplit multiplicative | $42$ | \( 14 = 2 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 574i
consists of 2 curves linked by isogenies of
degree 7.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{7}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.2296.1 | \(\Z/14\Z\) | not in database |
$6$ | 6.6.12103630336.1 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
$8$ | 8.2.14838034276107.1 | \(\Z/21\Z\) | not in database |
$12$ | deg 12 | \(\Z/28\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | ord | split | ord | ss | ord | ord | ord | ord | ord | ord | nonsplit | ord | ord |
$\lambda$-invariant(s) | 2 | 1,1 | 1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.