Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-138982x+9749732\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-138982xz^2+9749732z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-180120699x+455423858262\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(20908, 3012298)$ | $2.8413297929145886033780883870$ | $\infty$ |
| $(-404, 202)$ | $0$ | $2$ |
Integral points
\( \left(-404, 202\right) \), \( \left(20908, 3012298\right) \), \( \left(20908, -3033206\right) \)
Invariants
| Conductor: | $N$ | = | \( 57498 \) | = | $2 \cdot 3 \cdot 7 \cdot 37^{2}$ |
|
| Discriminant: | $\Delta$ | = | $130650565495554048$ | = | $2^{16} \cdot 3 \cdot 7 \cdot 37^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{115714886617}{50921472} \) | = | $2^{-16} \cdot 3^{-1} \cdot 7^{-1} \cdot 11^{3} \cdot 37^{-1} \cdot 443^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9801041230379646510827861285$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.17464516671585242889873829298$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9142794961837379$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.301280093988664$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8413297929145886033780883870$ |
|
| Real period: | $\Omega$ | ≈ | $0.29608080894281286830434644455$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{4}\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $13.460211576951461768514782714 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 13.460211577 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.296081 \cdot 2.841330 \cdot 64}{2^2} \\ & \approx 13.460211577\end{aligned}$$
Modular invariants
Modular form 57498.2.a.t
For more coefficients, see the Downloads section to the right.
| Modular degree: | 525312 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $37$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6216 = 2^{3} \cdot 3 \cdot 7 \cdot 37 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 6209 & 8 \\ 6208 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2080 & 3 \\ 2077 & 2 \end{array}\right),\left(\begin{array}{rr} 3692 & 6215 \\ 5689 & 6210 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 6210 & 6211 \end{array}\right),\left(\begin{array}{rr} 785 & 780 \\ 782 & 3887 \end{array}\right),\left(\begin{array}{rr} 5443 & 5442 \\ 3898 & 787 \end{array}\right),\left(\begin{array}{rr} 5332 & 1 \\ 2687 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[6216])$ is a degree-$5642506469376$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6216\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 28749 = 3 \cdot 7 \cdot 37^{2} \) |
| $3$ | split multiplicative | $4$ | \( 19166 = 2 \cdot 7 \cdot 37^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
| $37$ | additive | $722$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 57498.t
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1554.c4, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{777}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-111}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{-111})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.66946905081.2 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | ord | nonsplit | ss | ord | ord | ord | ss | ord | ss | add | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | - | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.