Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+6021x+243729\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+6021xz^2+243729z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+7803189x+11348010630\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(30, 657)$ | $0.30088864844584086065477568145$ | $\infty$ |
| $(-34, 17)$ | $0$ | $2$ |
Integral points
\( \left(-34, 17\right) \), \( \left(-18, 369\right) \), \( \left(-18, -351\right) \), \( \left(30, 657\right) \), \( \left(30, -687\right) \), \( \left(114, 1497\right) \), \( \left(114, -1611\right) \), \( \left(450, 9477\right) \), \( \left(450, -9927\right) \), \( \left(558, 13041\right) \), \( \left(558, -13599\right) \)
Invariants
| Conductor: | $N$ | = | \( 57498 \) | = | $2 \cdot 3 \cdot 7 \cdot 37^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-39526417760256$ | = | $-1 \cdot 2^{16} \cdot 3^{5} \cdot 7^{2} \cdot 37^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{476562552731}{780337152} \) | = | $2^{-16} \cdot 3^{-5} \cdot 7^{-2} \cdot 73^{3} \cdot 107^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2940946741324398289226757414$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.39136519597138371783065182364$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9885533049107581$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.497114781816599$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.30088864844584086065477568145$ |
|
| Real period: | $\Omega$ | ≈ | $0.44142518241335863307804030484$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 320 $ = $ 2^{4}\cdot5\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.625586122105139159027423112 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.625586122 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.441425 \cdot 0.300889 \cdot 320}{2^2} \\ & \approx 10.625586122\end{aligned}$$
Modular invariants
Modular form 57498.2.a.q
For more coefficients, see the Downloads section to the right.
| Modular degree: | 138240 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $37$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 444 = 2^{2} \cdot 3 \cdot 37 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 298 & 1 \\ 295 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 113 & 334 \\ 332 & 111 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 304 & 1 \\ 35 & 0 \end{array}\right),\left(\begin{array}{rr} 441 & 4 \\ 440 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[444])$ is a degree-$699715584$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/444\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 111 = 3 \cdot 37 \) |
| $3$ | split multiplicative | $4$ | \( 19166 = 2 \cdot 7 \cdot 37^{2} \) |
| $5$ | good | $2$ | \( 19166 = 2 \cdot 7 \cdot 37^{2} \) |
| $7$ | split multiplicative | $8$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
| $37$ | additive | $362$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 57498.q
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-111}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.151959.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.207823839129.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | ord | split | ss | ord | ord | ord | ord | ord | ord | add | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 2 | 1 | 4 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.