Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+42547x-3134113\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+42547xz^2-3134113z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+680757x-199902458\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(463/4, 14135/8)$ | $5.0479439072760914730414332048$ | $\infty$ |
$(267/4, -271/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 57330 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-9144062198066250$ | = | $-1 \cdot 2 \cdot 3^{14} \cdot 5^{4} \cdot 7^{6} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{99317171591}{106616250} \) | = | $2^{-1} \cdot 3^{-8} \cdot 5^{-4} \cdot 11^{3} \cdot 13^{-1} \cdot 421^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7492937617104665522301642251$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.22703254284875505397986523492$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.035787691267508$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9783145495724916$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.0479439072760914730414332048$ |
|
Real period: | $\Omega$ | ≈ | $0.22217309649574394395054051421$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.9721386305308303262317354013 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.972138631 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.222173 \cdot 5.047944 \cdot 32}{2^2} \\ & \approx 8.972138631\end{aligned}$$
Modular invariants
Modular form 57330.2.a.du
For more coefficients, see the Downloads section to the right.
Modular degree: | 393216 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10564 & 8841 \\ 5103 & 526 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 8737 & 5208 \\ 4788 & 9913 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 4096 & 3843 \\ 3969 & 358 \end{array}\right),\left(\begin{array}{rr} 8128 & 1113 \\ 8673 & 400 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
$3$ | additive | $8$ | \( 6370 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 11466 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $26$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 57330eh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 390a4, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-26}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-273}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-26}, \sqrt{42})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | nonsplit | add | ss | split | ord | ss | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 6 | - | 1 | - | 1,1 | 2 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 2 | - | 0 | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.