Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy+y=x^3-x^2+4768x+97731\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz+yz^2=x^3-x^2z+4768xz^2+97731z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+76293x+6331094\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-19, 9)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-19, 9\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 57330 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-11166113649600$ | = | $-1 \cdot 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{6} \cdot 13^{3} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{3774555693}{3515200} \) | = | $2^{-6} \cdot 3^{6} \cdot 5^{-2} \cdot 13^{-3} \cdot 173^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1908828323244754924448183659$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.056725314370208582956669315053$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.949724584751915$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.379051542876394$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.47013662539243145885693236769$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ ( 2 \cdot 3 )\cdot2\cdot2\cdot2\cdot1 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $5.6416395047091775062831884123 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 5.641639505 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.470137 \cdot 1.000000 \cdot 48}{2^2} \\ & \approx 5.641639505\end{aligned}$$
Modular invariants
Modular form 57330.2.a.ep
For more coefficients, see the Downloads section to the right.
| Modular degree: | 165888 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 | 
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 | 
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5461 & 7812 \\ 9366 & 3193 \end{array}\right),\left(\begin{array}{rr} 8072 & 6251 \\ 7245 & 3088 \end{array}\right),\left(\begin{array}{rr} 10599 & 1498 \\ 3206 & 6581 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 10909 & 12 \\ 10908 & 13 \end{array}\right),\left(\begin{array}{rr} 8737 & 7812 \\ 7182 & 3193 \end{array}\right),\left(\begin{array}{rr} 1450 & 4683 \\ 8253 & 7792 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 10870 & 10911 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1911 = 3 \cdot 7^{2} \cdot 13 \) | 
| $3$ | additive | $6$ | \( 245 = 5 \cdot 7^{2} \) | 
| $5$ | split multiplicative | $6$ | \( 11466 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) | 
| $7$ | additive | $26$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 57330.ep
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 1170.c4, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/6\Z\) | not in database | 
| $4$ | 4.2.27518400.4 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-7}, \sqrt{-39})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.2.468838125.1 | \(\Z/6\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.0.309713554175444073757953668643340132800000000.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 | 
|---|---|---|---|---|---|
| Reduction type | split | add | split | add | nonsplit | 
| $\lambda$-invariant(s) | 6 | - | 1 | - | 0 | 
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.