Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3-x^2-213233x-3888223\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3-x^2z-213233xz^2-3888223z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-3411723x-252257978\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-33, 1780)$ | $0.84784733419624669827619972928$ | $\infty$ | 
| $(1143, 34708)$ | $0$ | $4$ | 
Integral points
      
    \( \left(-425, 3348\right) \), \( \left(-425, -2924\right) \), \( \left(-297, 5908\right) \), \( \left(-297, -5612\right) \), \( \left(-117, 4468\right) \), \( \left(-117, -4352\right) \), \( \left(-33, 1780\right) \), \( \left(-33, -1748\right) \), \( \left(471, -236\right) \), \( \left(615, 9556\right) \), \( \left(615, -10172\right) \), \( \left(1143, 34708\right) \), \( \left(1143, -35852\right) \), \( \left(3607, 213012\right) \), \( \left(3607, -216620\right) \), \( \left(5553, 409558\right) \), \( \left(5553, -415112\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 57330 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $613787920839475200$ | = | $2^{20} \cdot 3^{7} \cdot 5^{2} \cdot 7^{7} \cdot 13 $ |  | 
| j-invariant: | $j$ | = | \( \frac{12501706118329}{7156531200} \) | = | $2^{-20} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-1} \cdot 13^{-1} \cdot 23209^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1029151598095900267806465102$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.58065394094787852853034752002$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9797737929026421$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.419629468866317$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.84784733419624669827619972928$ |  | 
| Real period: | $\Omega$ | ≈ | $0.24086218959852862698542797302$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 640 $ = $ ( 2^{2} \cdot 5 )\cdot2^{2}\cdot2\cdot2^{2}\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $8.1685746143913374464225129617 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 8.168574614 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.240862 \cdot 0.847847 \cdot 640}{4^2} \\ & \approx 8.168574614\end{aligned}$$
Modular invariants
Modular form 57330.2.a.dh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 983040 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 | 
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.12.0.7 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1369 & 1368 \\ 286 & 1375 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2177 & 8 \\ 2176 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 724 & 2183 \\ 1433 & 2178 \end{array}\right),\left(\begin{array}{rr} 848 & 3 \\ 1349 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2178 & 2179 \end{array}\right),\left(\begin{array}{rr} 827 & 822 \\ 1370 & 275 \end{array}\right),\left(\begin{array}{rr} 1556 & 2183 \\ 1849 & 2178 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$81155063808$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) | 
| $3$ | additive | $8$ | \( 6370 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) | 
| $7$ | additive | $32$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) | 
| $13$ | split multiplicative | $14$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 57330.dh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730.f4, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{273}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.4.192628800.3 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.0.3845007938064384.123 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | nonsplit | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ss | 
| $\lambda$-invariant(s) | 4 | - | 1 | - | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
