Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-163179x+399758085\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-163179xz^2+399758085z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2610867x+25581906574\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-810, 405)$ | $0$ | $2$ |
Integral points
\( \left(-810, 405\right) \)
Invariants
| Conductor: | $N$ | = | \( 57330 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-68744247134021222400$ | = | $-1 \cdot 2^{24} \cdot 3^{7} \cdot 5^{2} \cdot 7^{8} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( -\frac{5602762882081}{801531494400} \) | = | $-1 \cdot 2^{-24} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{-1} \cdot 17761^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4858111752547164305318411272$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.96354995639300493228154213702$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9925267429077052$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.849659744940904$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.15981740866090078599102745079$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.5570785385744125758564392126 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.557078539 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.159817 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 2.557078539\end{aligned}$$
Modular invariants
Modular form 57330.2.a.cr
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2359296 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{24}$ | nonsplit multiplicative | 1 | 1 | 24 | 24 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.13 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 15 & 2 \\ 4270 & 4355 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 4364 & 4365 \end{array}\right),\left(\begin{array}{rr} 1649 & 16 \\ 746 & 3567 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1235 & 4352 \\ 880 & 315 \end{array}\right),\left(\begin{array}{rr} 4353 & 16 \\ 4352 & 17 \end{array}\right),\left(\begin{array}{rr} 1696 & 5 \\ 963 & 4354 \end{array}\right),\left(\begin{array}{rr} 2896 & 4363 \\ 45 & 14 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 1092 & 1093 \end{array}\right)$.
The torsion field $K:=\Q(E[4368])$ is a degree-$324620255232$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4368\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
| $3$ | additive | $8$ | \( 3185 = 5 \cdot 7^{2} \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 11466 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 57330.cr
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 2730.x5, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{21}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-91}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{21}, \sqrt{-39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{13}, \sqrt{21})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.5554571841.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | add | split | add | nonsplit |
| $\lambda$-invariant(s) | 6 | - | 1 | - | 0 |
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.