Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-213300261x+1509291282325\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-213300261xz^2+1509291282325z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3412804179x+96591229264622\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-69325/4, 69325/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 57222 \) | = | $2 \cdot 3^{2} \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-362919833076833561534746752$ | = | $-1 \cdot 2^{7} \cdot 3^{8} \cdot 11^{8} \cdot 17^{10} $ |
|
j-invariant: | $j$ | = | \( -\frac{60992553706117024753}{20624795251201152} \) | = | $-1 \cdot 2^{-7} \cdot 3^{-2} \cdot 11^{-8} \cdot 17^{-4} \cdot 937^{3} \cdot 4201^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8081805305680130220443466442$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8422677142058501362219567168$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0176943714578126$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.35420754563965$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.050702903020237278865375824717$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.40562322416189823092300659774 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.405623224 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.050703 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.405623224\end{aligned}$$
Modular invariants
Modular form 57222.2.a.t
For more coefficients, see the Downloads section to the right.
Modular degree: | 24772608 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$11$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$17$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.16 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 408 = 2^{3} \cdot 3 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 271 & 0 \\ 0 & 407 \end{array}\right),\left(\begin{array}{rr} 88 & 297 \\ 315 & 166 \end{array}\right),\left(\begin{array}{rr} 167 & 264 \\ 396 & 239 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 256 & 195 \\ 123 & 16 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 402 & 403 \end{array}\right),\left(\begin{array}{rr} 401 & 8 \\ 400 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[408])$ is a degree-$120324096$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/408\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$3$ | additive | $8$ | \( 6358 = 2 \cdot 11 \cdot 17^{2} \) |
$7$ | good | $2$ | \( 28611 = 3^{2} \cdot 11 \cdot 17^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 57222.t
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1122.m3, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{51}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-102}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{51})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.28375309615104.61 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.27710263296.8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.28375309615104.145 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 11 | 17 |
---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | add |
$\lambda$-invariant(s) | 9 | - | 0 | - |
$\mu$-invariant(s) | 1 | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.