Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-59877x+974347465\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-59877xz^2+974347465z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-958035x+62357279726\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4045/4, 4045/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 57222 \) | = | $2 \cdot 3^{2} \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-410094147590607517092$ | = | $-1 \cdot 2^{2} \cdot 3^{10} \cdot 11^{4} \cdot 17^{9} $ |
|
j-invariant: | $j$ | = | \( -\frac{274625}{4743684} \) | = | $-1 \cdot 2^{-2} \cdot 3^{-4} \cdot 5^{3} \cdot 11^{-4} \cdot 13^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6341456237708822228782579067$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.040070528605334683006515675163$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0770442522930508$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.0131636079227295$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.13443507613561828438087015724$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0754806090849462750469612579 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.075480609 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.134435 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.075480609\end{aligned}$$
Modular invariants
Modular form 57222.2.a.p
For more coefficients, see the Downloads section to the right.
Modular degree: | 1671168 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$17$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.11 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 4480 & 4467 \end{array}\right),\left(\begin{array}{rr} 4481 & 8 \\ 4480 & 9 \end{array}\right),\left(\begin{array}{rr} 2249 & 1124 \\ 1144 & 2253 \end{array}\right),\left(\begin{array}{rr} 3370 & 3369 \\ 21 & 3382 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 1854 & 19 \\ 1577 & 4466 \end{array}\right),\left(\begin{array}{rr} 409 & 8 \\ 1636 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2993 & 8 \\ 2996 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[4488])$ is a degree-$1588278067200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4488\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 153 = 3^{2} \cdot 17 \) |
$3$ | additive | $8$ | \( 6358 = 2 \cdot 11 \cdot 17^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \) |
$17$ | additive | $98$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 57222.p
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 19074.bg2, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.176868.1 | \(\Z/4\Z\) | not in database |
$4$ | 4.0.707472.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.500516630784.6 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 11 | 17 |
---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | add |
$\lambda$-invariant(s) | 7 | - | 0 | - |
$\mu$-invariant(s) | 1 | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.