Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-13744704x+19474747956\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-13744704xz^2+19474747956z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1113321051x+14200431223050\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1994, 0)$ | $0$ | $2$ |
$(906, 88128)$ | $0$ | $4$ |
Integral points
\( \left(-4278, 0\right) \), \((906,\pm 88128)\), \( \left(1994, 0\right) \), \( \left(2283, 0\right) \), \((3660,\pm 134946)\)
Invariants
Conductor: | $N$ | = | \( 5712 \) | = | $2^{4} \cdot 3 \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $2262912925256395259904$ | = | $2^{18} \cdot 3^{16} \cdot 7^{4} \cdot 17^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{70108386184777836280897}{552468975892674624} \) | = | $2^{-6} \cdot 3^{-16} \cdot 7^{-4} \cdot 17^{-4} \cdot 41234113^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9257025596029904172434231819$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2325553790430451078261910604$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.07814467781823$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.042752616957776$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14664084702227581650715426836$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 512 $ = $ 2^{2}\cdot2^{4}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $8$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.1731267761782065320572341469 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.173126776 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.146641 \cdot 1.000000 \cdot 512}{8^2} \\ & \approx 1.173126776\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 368640 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
$3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$17$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.96.0.33 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 136 = 2^{3} \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 3 & 106 \\ 98 & 131 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 129 & 96 \\ 114 & 15 \end{array}\right),\left(\begin{array}{rr} 105 & 8 \\ 12 & 33 \end{array}\right),\left(\begin{array}{rr} 129 & 8 \\ 128 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 132 & 133 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[136])$ is a degree-$626688$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/136\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 1904 = 2^{4} \cdot 7 \cdot 17 \) |
$7$ | nonsplit multiplicative | $8$ | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 5712t
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714g3, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\zeta_{8})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.40282095616.10 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.5473632256.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.6327518887936.11 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 17 |
---|---|---|---|---|
Reduction type | add | split | nonsplit | split |
$\lambda$-invariant(s) | - | 1 | 0 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.