Properties

Label 5712.e
Number of curves $4$
Conductor $5712$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5712.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5712.e do not have complex multiplication.

Modular form 5712.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} + 6 q^{13} + 2 q^{15} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5712.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5712.e1 5712b3 \([0, -1, 0, -544, 4624]\) \(17418812548/1753941\) \(1796035584\) \([4]\) \(2560\) \(0.51187\)  
5712.e2 5712b2 \([0, -1, 0, -124, -416]\) \(830321872/127449\) \(32626944\) \([2, 2]\) \(1280\) \(0.16530\)  
5712.e3 5712b1 \([0, -1, 0, -119, -462]\) \(11745974272/357\) \(5712\) \([2]\) \(640\) \(-0.18127\) \(\Gamma_0(N)\)-optimal
5712.e4 5712b4 \([0, -1, 0, 216, -2592]\) \(1083360092/3306177\) \(-3385525248\) \([2]\) \(2560\) \(0.51187\)