Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-2769807243x-161231179701958\)
|
(homogenize, simplify) |
\(y^2z=x^3-2769807243xz^2-161231179701958z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2769807243x-161231179701958\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(121142494108652534778679/1705445425967599369, 1457768851618111670275436010656250/2227187291899069901961239653)$ | $41.211432954381987156970216944$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 56880 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $-9870085346328133632000000000000$ | = | $-1 \cdot 2^{26} \cdot 3^{27} \cdot 5^{12} \cdot 79 $ |
|
j-invariant: | $j$ | = | \( -\frac{787018381229524347427258441}{3305471612148000000000000} \) | = | $-1 \cdot 2^{-14} \cdot 3^{-21} \cdot 5^{-12} \cdot 7^{3} \cdot 47^{3} \cdot 79^{-1} \cdot 107^{3} \cdot 26227^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.6323832749531954203481628767$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.3899299500591952652333081368$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0596781535165654$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.210981484850112$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $41.211432954381987156970216944$ |
|
Real period: | $\Omega$ | ≈ | $0.0094733071194739830914362169257$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.2465369793675456571796302000 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.246536979 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.009473 \cdot 41.211433 \cdot 16}{1^2} \\ & \approx 6.246536979\end{aligned}$$
Modular invariants
Modular form 56880.2.a.p
For more coefficients, see the Downloads section to the right.
Modular degree: | 68640768 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{18}^{*}$ | additive | -1 | 4 | 26 | 14 |
$3$ | $4$ | $I_{21}^{*}$ | additive | -1 | 2 | 27 | 21 |
$5$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$79$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 948 = 2^{2} \cdot 3 \cdot 79 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 943 & 6 \\ 942 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 78 & 863 \\ 629 & 534 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 473 & 942 \\ 471 & 929 \end{array}\right),\left(\begin{array}{rr} 793 & 6 \\ 483 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[948])$ is a degree-$11073853440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/948\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 711 = 3^{2} \cdot 79 \) |
$3$ | additive | $2$ | \( 1264 = 2^{4} \cdot 79 \) |
$5$ | nonsplit multiplicative | $6$ | \( 11376 = 2^{4} \cdot 3^{2} \cdot 79 \) |
$79$ | nonsplit multiplicative | $80$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 56880.p
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2370.e2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.948.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.851971392.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.89740986624.4 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.10784448.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.8636108554573355250871550450076672000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.40594688362385624583619329388714131456.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss | nonsplit |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.