Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+226x+54468\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+226xz^2+54468z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+292869x+2540380374\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(28, 274)$ | $0$ | $4$ |
Integral points
\( \left(-36, 18\right) \), \( \left(28, 274\right) \), \( \left(28, -302\right) \)
Invariants
Conductor: | $N$ | = | \( 5658 \) | = | $2 \cdot 3 \cdot 23 \cdot 41$ |
|
Discriminant: | $\Delta$ | = | $-1281494089728$ | = | $-1 \cdot 2^{24} \cdot 3^{4} \cdot 23 \cdot 41 $ |
|
j-invariant: | $j$ | = | \( \frac{1276229915423}{1281494089728} \) | = | $2^{-24} \cdot 3^{-4} \cdot 23^{-1} \cdot 41^{-1} \cdot 10847^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0022605280420370087452182594$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0022605280420370087452182594$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9925476282275606$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.089098917412608$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.67222814075486444966526847291$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ ( 2^{3} \cdot 3 )\cdot2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $4.0333688445291866979916108374 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.033368845 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.672228 \cdot 1.000000 \cdot 96}{4^2} \\ & \approx 4.033368845\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 9984 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $24$ | $I_{24}$ | split multiplicative | -1 | 1 | 24 | 24 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$23$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$41$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.29 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15088 = 2^{4} \cdot 23 \cdot 41 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 11316 & 11317 \end{array}\right),\left(\begin{array}{rr} 15073 & 16 \\ 15072 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 376 & 1 \\ 5599 & 10 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 15084 & 15085 \end{array}\right),\left(\begin{array}{rr} 8544 & 5 \\ 5203 & 15074 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 14990 & 15075 \end{array}\right),\left(\begin{array}{rr} 9441 & 16 \\ 13402 & 4063 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[15088])$ is a degree-$94220963020800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15088\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 943 = 23 \cdot 41 \) |
$3$ | split multiplicative | $4$ | \( 943 = 23 \cdot 41 \) |
$23$ | nonsplit multiplicative | $24$ | \( 246 = 2 \cdot 3 \cdot 41 \) |
$41$ | split multiplicative | $42$ | \( 138 = 2 \cdot 3 \cdot 23 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 5658g
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-943}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{41}) \) | \(\Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{-23}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-23}, \sqrt{41})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | 8.2.140081432044425147.8 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 23 | 41 |
---|---|---|---|---|
Reduction type | split | split | nonsplit | split |
$\lambda$-invariant(s) | 3 | 5 | 0 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.