Show commands: SageMath
Rank
The elliptic curves in class 561d have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 561d do not have complex multiplication.Modular form 561.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 561d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 561.b3 | 561d1 | \([1, 0, 0, -12, 15]\) | \(192100033/561\) | \(561\) | \([2]\) | \(32\) | \(-0.60209\) | \(\Gamma_0(N)\)-optimal |
| 561.b2 | 561d2 | \([1, 0, 0, -17, 0]\) | \(545338513/314721\) | \(314721\) | \([2, 2]\) | \(64\) | \(-0.25552\) | |
| 561.b1 | 561d3 | \([1, 0, 0, -182, -957]\) | \(666940371553/2756193\) | \(2756193\) | \([2]\) | \(128\) | \(0.091056\) | |
| 561.b4 | 561d4 | \([1, 0, 0, 68, 17]\) | \(34741712447/20160657\) | \(-20160657\) | \([4]\) | \(128\) | \(0.091056\) |