Properties

Label 561d
Number of curves $4$
Conductor $561$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 561d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 561d do not have complex multiplication.

Modular form 561.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 3 q^{8} + q^{9} - 2 q^{10} + q^{11} - q^{12} - 2 q^{13} + 2 q^{15} - q^{16} + q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 561d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
561.b3 561d1 \([1, 0, 0, -12, 15]\) \(192100033/561\) \(561\) \([2]\) \(32\) \(-0.60209\) \(\Gamma_0(N)\)-optimal
561.b2 561d2 \([1, 0, 0, -17, 0]\) \(545338513/314721\) \(314721\) \([2, 2]\) \(64\) \(-0.25552\)  
561.b1 561d3 \([1, 0, 0, -182, -957]\) \(666940371553/2756193\) \(2756193\) \([2]\) \(128\) \(0.091056\)  
561.b4 561d4 \([1, 0, 0, 68, 17]\) \(34741712447/20160657\) \(-20160657\) \([4]\) \(128\) \(0.091056\)