Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+46x+209\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+46xz^2+209z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+741x+14134\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-3, 7)$ | $0.48546215756949726920445906596$ | $\infty$ |
$(1, 15)$ | $0$ | $3$ |
Integral points
\( \left(-3, 7\right) \), \( \left(-3, -5\right) \), \( \left(1, 15\right) \), \( \left(1, -17\right) \), \( \left(7, 25\right) \), \( \left(7, -33\right) \), \( \left(9, 31\right) \), \( \left(9, -41\right) \), \( \left(33, 175\right) \), \( \left(33, -209\right) \), \( \left(49, 319\right) \), \( \left(49, -369\right) \), \( \left(1041, 33055\right) \), \( \left(1041, -34097\right) \)
Invariants
Conductor: | $N$ | = | \( 558 \) | = | $2 \cdot 3^{2} \cdot 31$ |
|
Discriminant: | $\Delta$ | = | $-27426816$ | = | $-1 \cdot 2^{15} \cdot 3^{3} \cdot 31 $ |
|
j-invariant: | $j$ | = | \( \frac{406869021}{1015808} \) | = | $2^{-15} \cdot 3^{3} \cdot 13^{3} \cdot 19^{3} \cdot 31^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.11108040620522420955804184591$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16357266596180321329076946332$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9724516787447685$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.845141706541257$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.48546215756949726920445906596$ |
|
Real period: | $\Omega$ | ≈ | $1.4723271192316955981297361465$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 30 $ = $ ( 3 \cdot 5 )\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.3825303331676713387119517483 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.382530333 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.472327 \cdot 0.485462 \cdot 30}{3^2} \\ & \approx 2.382530333\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 240 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $15$ | $I_{15}$ | split multiplicative | -1 | 1 | 15 | 15 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$31$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 744 = 2^{3} \cdot 3 \cdot 31 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 373 & 6 \\ 375 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 559 & 6 \\ 189 & 19 \end{array}\right),\left(\begin{array}{rr} 739 & 6 \\ 738 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 342 & 409 \\ 499 & 174 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 313 & 6 \\ 195 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[744])$ is a degree-$4114022400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/744\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 93 = 3 \cdot 31 \) |
$3$ | additive | $6$ | \( 31 \) |
$5$ | good | $2$ | \( 279 = 3^{2} \cdot 31 \) |
$31$ | split multiplicative | $32$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 558f
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 558b2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.744.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.411830784.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.2019740427.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$9$ | 9.3.848097084259008.5 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$18$ | 18.0.2075630218058997773495274396231401472.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | ord | ord | ord | ord | ord | ord | ord | split | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.