Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-28913368x-59852675228\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-28913368xz^2-59852675228z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-37471725603x-2791924339556898\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6287669/2025, 138559969/91125)$ | $12.010843546026844343100389245$ | $\infty$ |
| $(-12421/4, 12421/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 55770 \) | = | $2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $60478408392187500$ | = | $2^{2} \cdot 3^{6} \cdot 5^{8} \cdot 11 \cdot 13^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{553808571467029327441}{12529687500} \) | = | $2^{-2} \cdot 3^{-6} \cdot 5^{-8} \cdot 11^{-1} \cdot 23^{3} \cdot 357047^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7442343023036986188253001936$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4617596235729302507985564728$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.047398607062714$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.7784881305465525$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $12.010843546026844343100389245$ |
|
| Real period: | $\Omega$ | ≈ | $0.065106579936906493732430177446$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.1279397817562967632862707373 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.127939782 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.065107 \cdot 12.010844 \cdot 16}{2^2} \\ & \approx 3.127939782\end{aligned}$$
Modular invariants
Modular form 55770.2.a.d
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2949120 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $5$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 34320 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 14093 & 26416 \\ 12064 & 10245 \end{array}\right),\left(\begin{array}{rr} 27457 & 26416 \\ 26936 & 5409 \end{array}\right),\left(\begin{array}{rr} 31679 & 0 \\ 0 & 34319 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 34316 & 34317 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 34222 & 34307 \end{array}\right),\left(\begin{array}{rr} 28718 & 5941 \\ 18889 & 27730 \end{array}\right),\left(\begin{array}{rr} 9608 & 31681 \\ 13039 & 10570 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 34305 & 16 \\ 34304 & 17 \end{array}\right),\left(\begin{array}{rr} 2653 & 26416 \\ 32084 & 18825 \end{array}\right)$.
The torsion field $K:=\Q(E[34320])$ is a degree-$1020235087872000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/34320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1859 = 11 \cdot 13^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 18590 = 2 \cdot 5 \cdot 11 \cdot 13^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 11154 = 2 \cdot 3 \cdot 11 \cdot 13^{2} \) |
| $11$ | nonsplit multiplicative | $12$ | \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
| $13$ | additive | $86$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 55770a
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 330c5, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-143}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-13}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{11}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-13}, \sqrt{66})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{-13})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.4.16787053983338496.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.207247580041216.14 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.2219775733334016.56 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | nonsplit | ss | nonsplit | add | ord | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 5 | 1 | 1,1 | 1 | - | 1 | 1 | 5,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 2 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.