Properties

Label 55770.h
Number of curves $4$
Conductor $55770$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55770.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55770.h do not have complex multiplication.

Modular form 55770.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} + q^{10} + q^{11} - q^{12} - 4 q^{14} + q^{15} + q^{16} + 6 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 55770.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55770.h1 55770f4 \([1, 1, 0, -1095968, -442037682]\) \(30161840495801041/2799263610\) \(13511510786120490\) \([2]\) \(1376256\) \(2.1334\)  
55770.h2 55770f3 \([1, 1, 0, -403068, 93465858]\) \(1500376464746641/83599963590\) \(403521056655884310\) \([2]\) \(1376256\) \(2.1334\)  
55770.h3 55770f2 \([1, 1, 0, -73518, -5860512]\) \(9104453457841/2226896100\) \(10748802137544900\) \([2, 2]\) \(688128\) \(1.7868\)  
55770.h4 55770f1 \([1, 1, 0, 10982, -570812]\) \(30342134159/47190000\) \(-227777116710000\) \([2]\) \(344064\) \(1.4402\) \(\Gamma_0(N)\)-optimal