Properties

Label 55770.df
Number of curves $2$
Conductor $55770$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55770.df have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55770.df do not have complex multiplication.

Modular form 55770.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + 4 q^{14} + q^{15} + q^{16} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 55770.df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55770.df1 55770df2 \([1, 0, 0, -2675, -53223]\) \(963552009133/5270760\) \(11579859720\) \([2]\) \(64512\) \(0.77436\)  
55770.df2 55770df1 \([1, 0, 0, -75, -1743]\) \(-21253933/580800\) \(-1276017600\) \([2]\) \(32256\) \(0.42778\) \(\Gamma_0(N)\)-optimal