Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+784636x-449131824\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+784636xz^2-449131824z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1016887581x-20969947697634\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 55506 \) | = | $2 \cdot 3 \cdot 11 \cdot 29^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-118185726368028819456$ | = | $-1 \cdot 2^{21} \cdot 3^{3} \cdot 11^{2} \cdot 29^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{89813071796687}{198690471936} \) | = | $2^{-21} \cdot 3^{-3} \cdot 11^{-2} \cdot 19^{3} \cdot 29^{-1} \cdot 2357^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5357313730005761606151433097$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.85208345800733914702350729352$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9604003060005102$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.885486181497902$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.096828713813049862708453448164$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.38731485525219945083381379266 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.387314855 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.096829 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.387314855\end{aligned}$$
Modular invariants
Modular form 55506.2.a.c
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2540160 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{21}$ | nonsplit multiplicative | 1 | 1 | 21 | 21 |
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $29$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 696 = 2^{3} \cdot 3 \cdot 29 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 349 & 6 \\ 351 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 175 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 691 & 6 \\ 690 & 7 \end{array}\right),\left(\begin{array}{rr} 30 & 673 \\ 235 & 222 \end{array}\right),\left(\begin{array}{rr} 143 & 690 \\ 429 & 677 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[696])$ is a degree-$3143024640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/696\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2523 = 3 \cdot 29^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 9251 = 11 \cdot 29^{2} \) |
| $7$ | good | $2$ | \( 27753 = 3 \cdot 11 \cdot 29^{2} \) |
| $11$ | split multiplicative | $12$ | \( 5046 = 2 \cdot 3 \cdot 29^{2} \) |
| $29$ | additive | $450$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 55506l
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1914n1, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{29}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.696.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.337153536.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.8108200777743.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.14048064.2 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.1854868147914377806060207703936755144648052736.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.139737640173998028945885892899655487692996608.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | ord | ord | split | ord | ord | ord | ord | add | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | - | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.