Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-283014x-46352325\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-283014xz^2-46352325z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-366786171x-2157112274346\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4555, 303005)$ | $0.58794552680467260518416806442$ | $\infty$ |
Integral points
\( \left(1191, 35567\right) \), \( \left(1191, -36759\right) \), \( \left(4555, 303005\right) \), \( \left(4555, -307561\right) \)
Invariants
Conductor: | $N$ | = | \( 55506 \) | = | $2 \cdot 3 \cdot 11 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $527335756715664072$ | = | $2^{3} \cdot 3^{2} \cdot 11^{4} \cdot 29^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{5011452097}{1054152} \) | = | $2^{-3} \cdot 3^{-2} \cdot 11^{-4} \cdot 29 \cdot 557^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1152819394966552631030381395$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.12958194716099408835247654874$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8998374598851433$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.510458330621509$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.58794552680467260518416806442$ |
|
Real period: | $\Omega$ | ≈ | $0.21006415062648273912383709455$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 3\cdot2\cdot2\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.4462259973030856732818752744 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.446225997 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.210064 \cdot 0.587946 \cdot 36}{1^2} \\ & \approx 4.446225997\end{aligned}$$
Modular invariants
Modular form 55506.2.a.x
For more coefficients, see the Downloads section to the right.
Modular degree: | 835200 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$29$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 8.2.0.b.1, level \( 8 = 2^{3} \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[8])$ is a degree-$768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 841 = 29^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 9251 = 11 \cdot 29^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 5046 = 2 \cdot 3 \cdot 29^{2} \) |
$29$ | additive | $310$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 55506.x consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 55506.n1, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.6728.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.362127872.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.1834410527681787.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | ord | nonsplit | ord | ord | ord | ord | add | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.