Properties

Label 55488bj
Number of curves $4$
Conductor $55488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55488bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55488bj do not have complex multiplication.

Modular form 55488.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 55488bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55488.ed3 55488bj1 \([0, 1, 0, -1252, -17158]\) \(140608/3\) \(4634413248\) \([2]\) \(36864\) \(0.64381\) \(\Gamma_0(N)\)-optimal
55488.ed2 55488bj2 \([0, 1, 0, -2697, 28215]\) \(21952/9\) \(889807343616\) \([2, 2]\) \(73728\) \(0.99039\)  
55488.ed4 55488bj3 \([0, 1, 0, 8863, 215487]\) \(97336/81\) \(-64066128740352\) \([2]\) \(147456\) \(1.3370\)  
55488.ed1 55488bj4 \([0, 1, 0, -37377, 2767935]\) \(7301384/3\) \(2372819582976\) \([2]\) \(147456\) \(1.3370\)