Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+4179711x+5660476065\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+4179711xz^2+5660476065z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+338556564x+4127502721104\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1065, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1065, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 55488 \) | = | $2^{6} \cdot 3 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-18521767933002365534208$ | = | $-1 \cdot 2^{20} \cdot 3^{16} \cdot 17^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{1276229915423}{2927177028} \) | = | $2^{-2} \cdot 3^{-16} \cdot 17^{-1} \cdot 10847^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9568321382295256037798264871$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.50050469536149959952921099598$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0301007930420596$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.349469274485626$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.085190366549265715265839913949$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.3630458647882514442534386232 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.363045865 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.085190 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 1.363045865\end{aligned}$$
Modular invariants
Modular form 55488.2.a.m
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3538944 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{10}^{*}$ | additive | -1 | 6 | 20 | 2 |
| $3$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $17$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.96.0.293 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 272 = 2^{4} \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 257 & 16 \\ 256 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 259 & 256 \\ 212 & 151 \end{array}\right),\left(\begin{array}{rr} 94 & 61 \\ 145 & 114 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 268 & 269 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 174 & 259 \end{array}\right),\left(\begin{array}{rr} 248 & 271 \\ 1 & 262 \end{array}\right)$.
The torsion field $K:=\Q(E[272])$ is a degree-$10027008$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/272\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 289 = 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 18496 = 2^{6} \cdot 17^{2} \) |
| $17$ | additive | $162$ | \( 192 = 2^{6} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 55488.m
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 102.c6, its twist by $-136$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-34}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{17})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.1581879721984.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.395469930496.4 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.5473632256.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.350312464384.23 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 17 |
|---|---|---|---|
| Reduction type | add | nonsplit | add |
| $\lambda$-invariant(s) | - | 0 | - |
| $\mu$-invariant(s) | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.