Properties

Label 5537.a
Number of curves $2$
Conductor $5537$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5537.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(113\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5537.a do not have complex multiplication.

Modular form 5537.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} - q^{4} - 2 q^{5} + 2 q^{6} + 3 q^{8} + q^{9} + 2 q^{10} + 2 q^{12} - 2 q^{13} + 4 q^{15} - q^{16} + 6 q^{17} - q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5537.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5537.a1 5537d1 \([1, 0, 0, -99, 328]\) \(912673/113\) \(13294337\) \([2]\) \(1152\) \(0.096782\) \(\Gamma_0(N)\)-optimal
5537.a2 5537d2 \([1, 0, 0, 146, 1749]\) \(2924207/12769\) \(-1502260081\) \([2]\) \(2304\) \(0.44336\)