Properties

Label 55275q
Number of curves $1$
Conductor $55275$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 55275q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55275q do not have complex multiplication.

Modular form 55275.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - 4 q^{7} + q^{9} + q^{11} + 2 q^{12} + 6 q^{13} - 8 q^{14} - 4 q^{16} - 5 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 55275q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55275.r1 55275q1 \([0, 1, 1, 3652842, -38755382281]\) \(344981836779052322816/41728985197282986075\) \(-652015393707546657421875\) \([]\) \(15275520\) \(3.2489\) \(\Gamma_0(N)\)-optimal