Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-395933x-95849107\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-395933xz^2-95849107z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-513129600x-4478093478000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(413250593219773/509668915921, 3910614051036525946233/363858245434077031)$ | $34.025071084094997969846256948$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 55275 \) | = | $3 \cdot 5^{2} \cdot 11 \cdot 67$ |
|
Discriminant: | $\Delta$ | = | $-7405429467046875$ | = | $-1 \cdot 3 \cdot 5^{6} \cdot 11^{9} \cdot 67 $ |
|
j-invariant: | $j$ | = | \( -\frac{439308781656997888}{473947485891} \) | = | $-1 \cdot 2^{21} \cdot 3^{-1} \cdot 11^{-9} \cdot 67^{-1} \cdot 5939^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9610058085768333419069112432$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1562868523597831546065315766$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0325574590861153$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.604589647376996$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $34.025071084094997969846256948$ |
|
Real period: | $\Omega$ | ≈ | $0.095155949983734325748741032619$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.2376879622711486994389718861 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.237687962 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.095156 \cdot 34.025071 \cdot 1}{1^2} \\ & \approx 3.237687962\end{aligned}$$
Modular invariants
Modular form 55275.2.a.i
For more coefficients, see the Downloads section to the right.
Modular degree: | 419904 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
$67$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 66330 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 67 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 66313 & 18 \\ 66312 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 56641 & 26550 \\ 42345 & 511 \end{array}\right),\left(\begin{array}{rr} 1 & 26550 \\ 13275 & 32591 \end{array}\right),\left(\begin{array}{rr} 36181 & 26550 \\ 7245 & 39961 \end{array}\right),\left(\begin{array}{rr} 53063 & 0 \\ 0 & 66329 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right)$.
The torsion field $K:=\Q(E[66330])$ is a degree-$20370503780352000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/66330\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | nonsplit multiplicative | $4$ | \( 1675 = 5^{2} \cdot 67 \) |
$5$ | additive | $14$ | \( 2211 = 3 \cdot 11 \cdot 67 \) |
$11$ | nonsplit multiplicative | $12$ | \( 5025 = 3 \cdot 5^{2} \cdot 67 \) |
$67$ | nonsplit multiplicative | $68$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 55275a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 2211f3, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.8844.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.172936318896.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.148737942991125.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.49579314330375.1 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.29331126000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.964658258733967697585972869296615542119614356232000000000.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.3969787072979290936567789585582780008722692824000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 67 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | nonsplit | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss | ord | ord | nonsplit |
$\lambda$-invariant(s) | 4,1 | 1 | - | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.