Properties

Label 5461.b
Number of curves $1$
Conductor $5461$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5461.b1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(43\)\(1 + T\)
\(127\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5461.b do not have complex multiplication.

Modular form 5461.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - q^{5} + 3 q^{7} - 2 q^{9} - 4 q^{11} + 2 q^{12} + 2 q^{13} + q^{15} + 4 q^{16} - 5 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5461.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5461.b1 5461b1 \([0, -1, 1, -8771, -313197]\) \(74631223079501824/18670072261\) \(18670072261\) \([]\) \(4780\) \(0.95798\) \(\Gamma_0(N)\)-optimal