Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+271683x-220093659\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+271683xz^2-220093659z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+4346925x-14081647250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(102589, 32807768)$ | $5.5228411473220606969831133006$ | $\infty$ |
Integral points
\( \left(102589, 32807768\right) \), \( \left(102589, -32910357\right) \)
Invariants
Conductor: | $N$ | = | \( 54450 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-22197105717187500000$ | = | $-1 \cdot 2^{5} \cdot 3^{6} \cdot 5^{11} \cdot 11^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{109902239}{1100000} \) | = | $2^{-5} \cdot 5^{-5} \cdot 11^{-1} \cdot 479^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3933293614960616079168816979$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.15964337545422869711209237616$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9443840180226643$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.763087951232727$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.5228411473220606969831133006$ |
|
Real period: | $\Omega$ | ≈ | $0.10584018672957412050262669720$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot1\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.6763083064827382304415403617 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.676308306 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.105840 \cdot 5.522841 \cdot 8}{1^2} \\ & \approx 4.676308306\end{aligned}$$
Modular invariants
Modular form 54450.2.a.cv
For more coefficients, see the Downloads section to the right.
Modular degree: | 1728000 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{5}^{*}$ | additive | 1 | 2 | 11 | 5 |
$11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 119 & 870 \\ 1035 & 389 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1265 & 1201 \end{array}\right),\left(\begin{array}{rr} 439 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 1311 & 10 \\ 1310 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 661 & 450 \\ 225 & 931 \end{array}\right),\left(\begin{array}{rr} 991 & 450 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 329 & 210 \\ 765 & 323 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 27225 = 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
$3$ | additive | $6$ | \( 6050 = 2 \cdot 5^{2} \cdot 11^{2} \) |
$5$ | additive | $14$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 54450cf
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 110a1, its twist by $165$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{165}) \) | \(\Z/5\Z\) | not in database |
$3$ | 3.1.440.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.85184000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.287496000.1 | \(\Z/10\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/15\Z\) | not in database |
$20$ | 20.0.10019151533337487082567413330078125.2 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | - | - | 3 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.