Properties

Label 54450cf
Number of curves $2$
Conductor $54450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54450cf have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54450cf do not have complex multiplication.

Modular form 54450.2.a.cf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{7} - q^{8} - 6 q^{13} - 3 q^{14} + q^{16} + 7 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 54450cf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54450.cv2 54450cf1 \([1, -1, 0, 271683, -220093659]\) \(109902239/1100000\) \(-22197105717187500000\) \([]\) \(1728000\) \(2.3933\) \(\Gamma_0(N)\)-optimal
54450.cv1 54450cf2 \([1, -1, 0, -161717067, -791516079909]\) \(-23178622194826561/1610510\) \(-32498782480534218750\) \([]\) \(8640000\) \(3.1980\)