Properties

Label 54450.cp
Number of curves $4$
Conductor $54450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54450.cp have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54450.cp do not have complex multiplication.

Modular form 54450.2.a.cp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} - 4 q^{13} - 2 q^{14} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 54450.cp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54450.cp1 54450l4 \([1, -1, 0, -3476292, 2495542616]\) \(8527173507/200\) \(108967609884375000\) \([2]\) \(1244160\) \(2.3812\)  
54450.cp2 54450l3 \([1, -1, 0, -209292, 42025616]\) \(-1860867/320\) \(-174348175815000000\) \([2]\) \(622080\) \(2.0346\)  
54450.cp3 54450l2 \([1, -1, 0, -73167, -1973009]\) \(57960603/31250\) \(23355540527343750\) \([2]\) \(414720\) \(1.8319\)  
54450.cp4 54450l1 \([1, -1, 0, 17583, -248759]\) \(804357/500\) \(-373688648437500\) \([2]\) \(207360\) \(1.4853\) \(\Gamma_0(N)\)-optimal