Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-4674956x+1494020880\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-4674956xz^2+1494020880z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-4674956x+1494020880\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(865282/81, 788734144/729)$ | $8.7456486060911329610258106352$ | $\infty$ | 
| $(1980, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(1980, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 54208 \) | = | $2^{6} \cdot 7 \cdot 11^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $5574751860991327207424$ | = | $2^{21} \cdot 7 \cdot 11^{14} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{24331017010833}{12004097336} \) | = | $2^{-3} \cdot 3^{3} \cdot 7^{-1} \cdot 11^{-8} \cdot 13^{3} \cdot 743^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8658414854257327922670432621$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.62717307818662955611022329093$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.1340815776703688$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.292082986947472$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.7456486060911329610258106352$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.12007379317966981558192847908$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $4.2004928077994172419937359123 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 4.200492808 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.120074 \cdot 8.745649 \cdot 16}{2^2} \\ & \approx 4.200492808\end{aligned}$$
Modular invariants
Modular form 54208.2.a.bi
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2211840 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{11}^{*}$ | additive | -1 | 6 | 21 | 3 | 
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $11$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.9 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 616 = 2^{3} \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 384 & 517 \\ 143 & 450 \end{array}\right),\left(\begin{array}{rr} 609 & 8 \\ 608 & 9 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 615 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 610 & 611 \end{array}\right),\left(\begin{array}{rr} 12 & 561 \\ 55 & 342 \end{array}\right),\left(\begin{array}{rr} 32 & 55 \\ 231 & 296 \end{array}\right)$.
The torsion field $K:=\Q(E[616])$ is a degree-$851558400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/616\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 847 = 7 \cdot 11^{2} \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 7744 = 2^{6} \cdot 11^{2} \) | 
| $11$ | additive | $72$ | \( 448 = 2^{6} \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 54208bw
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 154b4, its twist by $88$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{154}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{11}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.7224684483444736.92 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.8.12036125753344.1 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.28221423763456.21 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | ord | nonsplit | add | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 1,1 | 1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0,0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.