Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-4180659963x-66437105591583\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-4180659963xz^2-66437105591583z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5418135312075x-3099673344074960250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-68337/4, 68337/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 54150 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $2769650726328849792480468750000$ | = | $2^{4} \cdot 3^{2} \cdot 5^{24} \cdot 19^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{10993009831928446009969}{3767761230468750000} \) | = | $2^{-4} \cdot 3^{-2} \cdot 5^{-18} \cdot 19^{-3} \cdot 23^{3} \cdot 47^{3} \cdot 67^{3} \cdot 307^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.5432978668858909031443074476$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2663594210856204858394140650$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0531544430296054$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.1631462887624915$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.019298701108056402909196975378$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $5.5580259191202440378487289089 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 5.558025919 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.019299 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 5.558025919\end{aligned}$$
Modular invariants
Modular form 54150.2.a.cl
For more coefficients, see the Downloads section to the right.
| Modular degree: | 149299200 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{18}^{*}$ | additive | 1 | 2 | 24 | 18 |
| $19$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 666 & 1057 \\ 665 & 1046 \end{array}\right),\left(\begin{array}{rr} 683 & 1128 \\ 678 & 1067 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 170 & 1137 \\ 567 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1090 & 1131 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1129 & 12 \\ 1128 & 13 \end{array}\right),\left(\begin{array}{rr} 761 & 12 \\ 766 & 73 \end{array}\right)$.
The torsion field $K:=\Q(E[1140])$ is a degree-$2836684800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
| $3$ | split multiplicative | $4$ | \( 18050 = 2 \cdot 5^{2} \cdot 19^{2} \) |
| $5$ | additive | $18$ | \( 2166 = 2 \cdot 3 \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 54150.cl
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 570.k1, its twist by $-95$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{285}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.17100.2 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{15}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.810034182000.9 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1688960160000.20 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.105560010000.2 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.4688489145980397798455106378303076500000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 19 |
|---|---|---|---|---|
| Reduction type | split | split | add | add |
| $\lambda$-invariant(s) | 3 | 3 | - | - |
| $\mu$-invariant(s) | 0 | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.