Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+1512x+33588\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+1512xz^2+33588z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1512x+33588\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-11, 125)$ | $1.5164477116617506657740502585$ | $\infty$ |
Integral points
\((-11,\pm 125)\)
Invariants
| Conductor: | $N$ | = | \( 540 \) | = | $2^{2} \cdot 3^{3} \cdot 5$ |
|
| Discriminant: | $\Delta$ | = | $-708588000000$ | = | $-1 \cdot 2^{8} \cdot 3^{11} \cdot 5^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{8429568}{15625} \) | = | $2^{13} \cdot 3 \cdot 5^{-6} \cdot 7^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.95857464581105087718951228651$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.51058473917467987953428392831$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0691763773828689$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.46238832537532$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5164477116617506657740502585$ |
|
| Real period: | $\Omega$ | ≈ | $0.62166386634904773946560792571$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.8854414950956196979729960846 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.885441495 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.621664 \cdot 1.516448 \cdot 2}{1^2} \\ & \approx 1.885441495\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 648 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
| $5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 6.16.0-6.b.1.1, level \( 6 = 2 \cdot 3 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 0 & 5 \\ 5 & 0 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 3 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 2 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[6])$ is a degree-$18$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 27 = 3^{3} \) |
| $3$ | additive | $4$ | \( 4 = 2^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 108 = 2^{2} \cdot 3^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 540c
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | 2.0.3.1-32400.1-b2 |
| $3$ | 3.1.108.1 | \(\Z/2\Z\) | not in database |
| $3$ | 3.1.972.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.34992.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.2834352.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.1.24794911296.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $18$ | 18.0.617673396283947000000000000.4 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.1844362878529525198848.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 3 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.