Properties

Label 54080.ba
Number of curves $1$
Conductor $54080$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 54080.ba1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54080.ba do not have complex multiplication.

Modular form 54080.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 3 q^{7} - 2 q^{9} + 5 q^{11} + q^{15} + 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 54080.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54080.ba1 54080cb1 \([0, -1, 0, -38081, -2839175]\) \(7311616/25\) \(20882706457600\) \([]\) \(159744\) \(1.4193\) \(\Gamma_0(N)\)-optimal