Properties

Label 539.a
Number of curves $3$
Conductor $539$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 539.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 539.a do not have complex multiplication.

Modular form 539.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - q^{5} - 2 q^{6} - 2 q^{9} + 2 q^{10} + q^{11} + 2 q^{12} - 4 q^{13} - q^{15} - 4 q^{16} + 2 q^{17} + 4 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 539.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
539.a1 539d3 \([0, 1, 1, -383196, 91174234]\) \(-52893159101157376/11\) \(-1294139\) \([]\) \(1800\) \(1.4697\)  
539.a2 539d2 \([0, 1, 1, -506, 7774]\) \(-122023936/161051\) \(-18947489099\) \([]\) \(360\) \(0.66495\)  
539.a3 539d1 \([0, 1, 1, -16, -66]\) \(-4096/11\) \(-1294139\) \([]\) \(72\) \(-0.13977\) \(\Gamma_0(N)\)-optimal