Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-19423730x-32927737103\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-19423730xz^2-32927737103z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-310779675x-2107685954250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2561, 5105)$ | $1.2649473720012757368851203248$ | $\infty$ |
$(-2591, 1295)$ | $0$ | $2$ |
$(5089, -2545)$ | $0$ | $2$ |
Integral points
\( \left(-2591, 1295\right) \), \( \left(-2561, 5105\right) \), \( \left(-2561, -2545\right) \), \( \left(-2527, 5071\right) \), \( \left(-2527, -2545\right) \), \( \left(5089, -2545\right) \), \( \left(6245, 295703\right) \), \( \left(6245, -301949\right) \), \( \left(8659, 665045\right) \), \( \left(8659, -673705\right) \), \( \left(21409, 3049295\right) \), \( \left(21409, -3070705\right) \), \( \left(55489, 13000655\right) \), \( \left(55489, -13056145\right) \)
Invariants
Conductor: | $N$ | = | \( 53550 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $477352582560000000000$ | = | $2^{14} \cdot 3^{6} \cdot 5^{10} \cdot 7^{2} \cdot 17^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{71149857462630609489}{41907496960000} \) | = | $2^{-14} \cdot 3^{3} \cdot 5^{-4} \cdot 7^{-2} \cdot 17^{-4} \cdot 19^{3} \cdot 139^{3} \cdot 523^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9126482169372025974193270609$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5586231163860975644213247758$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0689142172035648$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.690439898671393$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2649473720012757368851203248$ |
|
Real period: | $\Omega$ | ≈ | $0.071917031373237979281230408036$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1792 $ = $ ( 2 \cdot 7 )\cdot2^{2}\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.188781101823596185981093473 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.188781102 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.071917 \cdot 1.264947 \cdot 1792}{4^2} \\ & \approx 10.188781102\end{aligned}$$
Modular invariants
Modular form 53550.2.a.eq
For more coefficients, see the Downloads section to the right.
Modular degree: | 4128768 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$17$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 331 & 450 \\ 750 & 391 \end{array}\right),\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 631 & 450 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 421 & 450 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) |
$3$ | additive | $6$ | \( 5950 = 2 \cdot 5^{2} \cdot 7 \cdot 17 \) |
$5$ | additive | $18$ | \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 53550.eq
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1190.f3, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{14}, \sqrt{30})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.63456228123711897600000000.12 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | add | split | ord | ord | split | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 8 | - | - | 2 | 1 | 1 | 4 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.