Properties

Label 53550.de
Number of curves $4$
Conductor $53550$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("de1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 53550.de have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53550.de do not have complex multiplication.

Modular form 53550.2.a.de

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} + 2 q^{13} - q^{14} + q^{16} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 53550.de

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53550.de1 53550dp4 \([1, -1, 1, -118955, 15814297]\) \(16342588257633/8185058\) \(93232926281250\) \([2]\) \(262144\) \(1.6332\)  
53550.de2 53550dp2 \([1, -1, 1, -8705, 158797]\) \(6403769793/2775556\) \(31615317562500\) \([2, 2]\) \(131072\) \(1.2866\)  
53550.de3 53550dp1 \([1, -1, 1, -4205, -102203]\) \(721734273/13328\) \(151814250000\) \([2]\) \(65536\) \(0.94001\) \(\Gamma_0(N)\)-optimal
53550.de4 53550dp3 \([1, -1, 1, 29545, 1153297]\) \(250404380127/196003234\) \(-2232599337281250\) \([2]\) \(262144\) \(1.6332\)