Properties

Label 5355.r
Number of curves $4$
Conductor $5355$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5355.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5355.r do not have complex multiplication.

Modular form 5355.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} + q^{7} - 3 q^{8} + q^{10} - 6 q^{13} + q^{14} - q^{16} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5355.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5355.r1 5355q3 \([1, -1, 0, -15174, -715635]\) \(530044731605089/26309115\) \(19179344835\) \([2]\) \(8192\) \(1.0445\)  
5355.r2 5355q4 \([1, -1, 0, -4824, 121095]\) \(17032120495489/1339001685\) \(976132228365\) \([2]\) \(8192\) \(1.0445\)  
5355.r3 5355q2 \([1, -1, 0, -999, -9720]\) \(151334226289/28676025\) \(20904822225\) \([2, 2]\) \(4096\) \(0.69788\)  
5355.r4 5355q1 \([1, -1, 0, 126, -945]\) \(302111711/669375\) \(-487974375\) \([2]\) \(2048\) \(0.35131\) \(\Gamma_0(N)\)-optimal