Properties

Label 5328.e
Number of curves $4$
Conductor $5328$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5328.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5328.e do not have complex multiplication.

Modular form 5328.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{11} + 6 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5328.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5328.e1 5328v3 \([0, 0, 0, -115851, -15159494]\) \(57588477431113/78653268\) \(234857399795712\) \([2]\) \(27648\) \(1.6623\)  
5328.e2 5328v4 \([0, 0, 0, -87051, 9814714]\) \(24431916147913/202409388\) \(604391194017792\) \([4]\) \(27648\) \(1.6623\)  
5328.e3 5328v2 \([0, 0, 0, -9291, -91910]\) \(29704593673/15968016\) \(47680240287744\) \([2, 2]\) \(13824\) \(1.3158\)  
5328.e4 5328v1 \([0, 0, 0, 2229, -11270]\) \(410172407/255744\) \(-763647492096\) \([2]\) \(6912\) \(0.96920\) \(\Gamma_0(N)\)-optimal