Properties

Label 53235.z
Number of curves $4$
Conductor $53235$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 53235.z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53235.z do not have complex multiplication.

Modular form 53235.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + q^{7} - 3 q^{8} - q^{10} + q^{14} - q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 53235.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53235.z1 53235s4 \([1, -1, 0, -25664625, -50037023750]\) \(531301262949272089/4740474375\) \(16680514631211624375\) \([2]\) \(2580480\) \(2.8542\)  
53235.z2 53235s2 \([1, -1, 0, -1640430, -744180449]\) \(138742439989609/12224619225\) \(43015302628569405225\) \([2, 2]\) \(1290240\) \(2.5076\)  
53235.z3 53235s1 \([1, -1, 0, -355185, 68351440]\) \(1408317602329/242911305\) \(854742638945118105\) \([2]\) \(645120\) \(2.1610\) \(\Gamma_0(N)\)-optimal
53235.z4 53235s3 \([1, -1, 0, 1819845, -3468800984]\) \(189425802193991/1586486902455\) \(-5582440889921746833255\) \([2]\) \(2580480\) \(2.8542\)