Properties

Label 53130t
Number of curves $4$
Conductor $53130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 53130t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53130t do not have complex multiplication.

Modular form 53130.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 2 q^{13} + q^{14} - q^{15} + q^{16} - 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 53130t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53130.s4 53130t1 \([1, 0, 1, -8880329, -2603762548]\) \(77448107425788419878921609/41892392875786371072000\) \(41892392875786371072000\) \([2]\) \(5898240\) \(3.0318\) \(\Gamma_0(N)\)-optimal
53130.s2 53130t2 \([1, 0, 1, -83842249, 293435851916]\) \(65179715853307296723232286089/520784732418538896000000\) \(520784732418538896000000\) \([2, 2]\) \(11796480\) \(3.3784\)  
53130.s3 53130t3 \([1, 0, 1, -28182249, 677066835916]\) \(-2475429904568270179255646089/196606057528071366356412000\) \(-196606057528071366356412000\) \([2]\) \(23592960\) \(3.7249\)  
53130.s1 53130t4 \([1, 0, 1, -1338892969, 18856640041292]\) \(265436898662503851515370589836169/17149152760523437500000\) \(17149152760523437500000\) \([2]\) \(23592960\) \(3.7249\)