Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 53130t have rank \(1\).
L-function data
| Bad L-factors: | 
        
  | ||||||||||||||||||
| Good L-factors: | 
        
  | ||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||
Complex multiplication
The elliptic curves in class 53130t do not have complex multiplication.Modular form 53130.2.a.t
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 53130t
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 53130.s4 | 53130t1 | \([1, 0, 1, -8880329, -2603762548]\) | \(77448107425788419878921609/41892392875786371072000\) | \(41892392875786371072000\) | \([2]\) | \(5898240\) | \(3.0318\) | \(\Gamma_0(N)\)-optimal | 
| 53130.s2 | 53130t2 | \([1, 0, 1, -83842249, 293435851916]\) | \(65179715853307296723232286089/520784732418538896000000\) | \(520784732418538896000000\) | \([2, 2]\) | \(11796480\) | \(3.3784\) | |
| 53130.s3 | 53130t3 | \([1, 0, 1, -28182249, 677066835916]\) | \(-2475429904568270179255646089/196606057528071366356412000\) | \(-196606057528071366356412000\) | \([2]\) | \(23592960\) | \(3.7249\) | |
| 53130.s1 | 53130t4 | \([1, 0, 1, -1338892969, 18856640041292]\) | \(265436898662503851515370589836169/17149152760523437500000\) | \(17149152760523437500000\) | \([2]\) | \(23592960\) | \(3.7249\) |