Properties

Label 53130n
Number of curves $4$
Conductor $53130$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 53130n have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53130n do not have complex multiplication.

Modular form 53130.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 53130n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53130.l4 53130n1 \([1, 1, 0, 2513, -38171]\) \(1754006183281799/1679486054400\) \(-1679486054400\) \([2]\) \(110592\) \(1.0329\) \(\Gamma_0(N)\)-optimal
53130.l3 53130n2 \([1, 1, 0, -13167, -361179]\) \(252485100339244921/91458619560000\) \(91458619560000\) \([2, 2]\) \(221184\) \(1.3795\)  
53130.l2 53130n3 \([1, 1, 0, -90167, 10126221]\) \(81072599558658172921/2290272305567400\) \(2290272305567400\) \([2]\) \(442368\) \(1.7260\)  
53130.l1 53130n4 \([1, 1, 0, -187047, -31207491]\) \(723735009058769762041/198888834375000\) \(198888834375000\) \([2]\) \(442368\) \(1.7260\)