Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-1544x-22174\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-1544xz^2-22174z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2000403x-1028537298\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-24, 46)$ | $0.80964237150678846826542408990$ | $\infty$ |
| $(-27, 13)$ | $0$ | $2$ |
| $(45, -23)$ | $0$ | $2$ |
Integral points
\( \left(-27, 13\right) \), \( \left(-24, 46\right) \), \( \left(-24, -23\right) \), \( \left(-21, 43\right) \), \( \left(-21, -23\right) \), \( \left(45, -23\right) \), \( \left(54, 202\right) \), \( \left(54, -257\right) \), \( \left(78, 538\right) \), \( \left(78, -617\right) \), \( \left(183, 2323\right) \), \( \left(183, -2507\right) \), \( \left(551, 12627\right) \), \( \left(551, -13179\right) \)
Invariants
| Conductor: | $N$ | = | \( 53130 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $25405172100$ | = | $2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{406687851166969}{25405172100} \) | = | $2^{-2} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{-2} \cdot 23^{-2} \cdot 43^{3} \cdot 1723^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.74784478526063321662479661387$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.74784478526063321662479661387$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8657381097227188$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.091684782096507$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.80964237150678846826542408990$ |
|
| Real period: | $\Omega$ | ≈ | $0.76465881423129027436856674231$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.9528014059823253547115037662 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.952801406 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.764659 \cdot 0.809642 \cdot 128}{4^2} \\ & \approx 4.952801406\end{aligned}$$
Modular invariants
Modular form 53130.2.a.t
For more coefficients, see the Downloads section to the right.
| Modular degree: | 53248 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $23$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 70840 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 40483 & 2 \\ 20238 & 70839 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 70837 & 4 \\ 70836 & 5 \end{array}\right),\left(\begin{array}{rr} 57961 & 4 \\ 45082 & 9 \end{array}\right),\left(\begin{array}{rr} 35421 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 17711 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14171 & 2 \\ 14166 & 70839 \end{array}\right),\left(\begin{array}{rr} 64681 & 4 \\ 58522 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[70840])$ is a degree-$109204394213376000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/70840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1 \) |
| $3$ | split multiplicative | $4$ | \( 17710 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 10626 = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 23 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 7590 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 23 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 53130.t
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{253})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{35}, \sqrt{-253})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | split | nonsplit | nonsplit | nonsplit | ord | ord | ss | split | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 5 | 6 | 1 | 3 | 1 | 1 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.