Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-583x+1573\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-583xz^2+1573z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-756243x+84730158\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6, 73)$ | $0.86208664804753645881525877467$ | $\infty$ |
| $(1, 31)$ | $1.6748679964352422878740103336$ | $\infty$ |
| $(-26, 13)$ | $0$ | $2$ |
| $(22, -11)$ | $0$ | $2$ |
Integral points
\( \left(-26, 13\right) \), \( \left(-22, 77\right) \), \( \left(-22, -55\right) \), \( \left(-11, 88\right) \), \( \left(-11, -77\right) \), \( \left(-6, 73\right) \), \( \left(-6, -67\right) \), \( \left(-3, 59\right) \), \( \left(-3, -56\right) \), \( \left(1, 31\right) \), \( \left(1, -32\right) \), \( \left(22, -11\right) \), \( \left(23, 20\right) \), \( \left(23, -43\right) \), \( \left(34, 133\right) \), \( \left(34, -167\right) \), \( \left(43, 220\right) \), \( \left(43, -263\right) \), \( \left(66, 473\right) \), \( \left(66, -539\right) \), \( \left(99, 913\right) \), \( \left(99, -1012\right) \), \( \left(214, 3013\right) \), \( \left(214, -3227\right) \), \( \left(319, 5533\right) \), \( \left(319, -5852\right) \), \( \left(946, 28633\right) \), \( \left(946, -29579\right) \), \( \left(1814, 76373\right) \), \( \left(1814, -78187\right) \)
Invariants
| Conductor: | $N$ | = | \( 53130 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $11291187600$ | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{21973174804729}{11291187600} \) | = | $2^{-4} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{-2} \cdot 23^{-2} \cdot 37^{3} \cdot 757^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.62112505026261220732228385841$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.62112505026261220732228385841$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8681447342037907$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.823477957242442$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2731035552396061531230408698$ |
|
| Real period: | $\Omega$ | ≈ | $1.1249346108448391566855393374$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $5.7286330099145901535962362828 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.728633010 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.124935 \cdot 1.273104 \cdot 64}{4^2} \\ & \approx 5.728633010\end{aligned}$$
Modular invariants
Modular form 53130.2.a.d
For more coefficients, see the Downloads section to the right.
| Modular degree: | 45056 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 106260 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 75903 & 2 \\ 91078 & 106259 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 67623 & 2 \\ 96598 & 106259 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 53133 & 4 \\ 2 & 3 \end{array}\right),\left(\begin{array}{rr} 106257 & 4 \\ 106256 & 5 \end{array}\right),\left(\begin{array}{rr} 63757 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 64681 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 70841 & 4 \\ 35422 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[106260])$ is a degree-$327613182640128000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/106260\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 17710 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 10626 = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 23 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 7590 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 23 \) |
| $11$ | split multiplicative | $12$ | \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 53130.d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{3}, \sqrt{77})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-115})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-77}, \sqrt{115})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | nonsplit | nonsplit | split | ord | ord | ss | nonsplit | ord | ss | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 5 | 2 | 2 | 2 | 3 | 2 | 2 | 2,4 | 2 | 2 | 2,2 | 2 | 4 | 2 | 2,2 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.