Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-x^2-242458x+56240537\) | (homogenize, simplify) | 
| \(y^2z=x^3-x^2z-242458xz^2+56240537z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-19639125x+40940434125\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(652, 13225)$ | $1.4078645875020648857316803746$ | $\infty$ | 
Integral points
      
    \((218,\pm 3701)\), \((652,\pm 13225)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 52900 \) | = | $2^{2} \cdot 5^{2} \cdot 23^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $-450288165365750000$ | = | $-1 \cdot 2^{4} \cdot 5^{6} \cdot 23^{9} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{42592000}{12167} \) | = | $-1 \cdot 2^{8} \cdot 5^{3} \cdot 11^{3} \cdot 23^{-3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1025028878000481718658352663$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.50101223656822529731033152337$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.87184842279915$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.524627476005578$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4078645875020648857316803746$ |  | 
| Real period: | $\Omega$ | ≈ | $0.28150428478735163775680942222$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 3\cdot2\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.7558389653865033546680505639 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.755838965 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.281504 \cdot 1.407865 \cdot 12}{1^2} \\ & \approx 4.755838965\end{aligned}$$
Modular invariants
Modular form 52900.2.a.h
For more coefficients, see the Downloads section to the right.
| Modular degree: | 456192 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 | 
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
| $23$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 179 & 270 \\ 675 & 119 \end{array}\right),\left(\begin{array}{rr} 685 & 6 \\ 684 & 7 \end{array}\right),\left(\begin{array}{rr} 26 & 255 \\ 355 & 421 \end{array}\right),\left(\begin{array}{rr} 413 & 0 \\ 0 & 689 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[690])$ is a degree-$2308331520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/690\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 13225 = 5^{2} \cdot 23^{2} \) | 
| $5$ | additive | $14$ | \( 2116 = 2^{2} \cdot 23^{2} \) | 
| $23$ | additive | $288$ | \( 100 = 2^{2} \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 52900.h
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 92.b1, its twist by $-115$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{345}) \) | \(\Z/3\Z\) | not in database | 
| $3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.0.17739486000.5 | \(\Z/3\Z\) | not in database | 
| $6$ | 6.2.41063625.1 | \(\Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $12$ | 12.0.1686221298140625.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.6.16266023847729427451965755297616872000000000.1 | \(\Z/9\Z\) | not in database | 
| $18$ | 18.0.5582427558941175323256000000000.1 | \(\Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | ord | ss | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 1 | - | 3 | 1,1 | 1 | 1 | 3 | - | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
