Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-104x+372\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-104xz^2+372z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8451x+296514\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4, 6)$ | $0.24159712687271798496632475006$ | $\infty$ |
| $(6, 0)$ | $0$ | $2$ |
Integral points
\((-12,\pm 6)\), \((-2,\pm 24)\), \((4,\pm 6)\), \( \left(6, 0\right) \), \((7,\pm 6)\), \((22,\pm 96)\)
Invariants
| Conductor: | $N$ | = | \( 528 \) | = | $2^{4} \cdot 3 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $1216512$ | = | $2^{12} \cdot 3^{3} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( \frac{30664297}{297} \) | = | $3^{-3} \cdot 11^{-1} \cdot 313^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.012632067116688598242446120206$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.70577924767663390765967824166$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0970565641289056$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.076564560790409$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.24159712687271798496632475006$ |
|
| Real period: | $\Omega$ | ≈ | $2.7446333574658941034508119070$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.9892866004483446548391692989 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.989286600 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.744633 \cdot 0.241597 \cdot 12}{2^2} \\ & \approx 1.989286600\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 96 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 235 & 234 \\ 178 & 43 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right),\left(\begin{array}{rr} 223 & 228 \\ 226 & 97 \end{array}\right),\left(\begin{array}{rr} 104 & 3 \\ 197 & 2 \end{array}\right),\left(\begin{array}{rr} 92 & 1 \\ 199 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 33 = 3 \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 176 = 2^{4} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 48 = 2^{4} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 528h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 33a2, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | 2.2.12.1-363.1-b4 |
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/4\Z\) | 2.2.44.1-99.1-b3 |
| $4$ | \(\Q(\sqrt{3}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.4.4752.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.20663487504.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4081676544.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.8.2732361984.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.8197085952.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | 16.0.1349466756197022498816.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | ord | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | - | 2 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.