Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-17089636x+27187458471\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-17089636xz^2+27187458471z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-273434171x+1739723907990\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3073, 59153)$ | $2.5358433900189721866557466943$ | $\infty$ |
$(9691/4, -9695/8)$ | $0$ | $2$ |
Integral points
\( \left(3073, 59153\right) \), \( \left(3073, -62227\right) \)
Invariants
Conductor: | $N$ | = | \( 52598 \) | = | $2 \cdot 7 \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $216114768041604365024$ | = | $2^{5} \cdot 7^{3} \cdot 13^{8} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8666134391609950140872092222$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419133$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.664498288171793$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5358433900189721866557466943$ |
|
Real period: | $\Omega$ | ≈ | $0.17435107771867751884686064599$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 60 $ = $ 5\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.6319054196338873034928200973 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.631905420 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.174351 \cdot 2.535843 \cdot 60}{2^2} \\ & \approx 6.631905420\end{aligned}$$
Modular invariants
Modular form 52598.2.a.y
For more coefficients, see the Downloads section to the right.
Modular degree: | 3317760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 952 = 2^{3} \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 945 & 8 \\ 944 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 460 & 561 \\ 391 & 902 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 528 & 561 \\ 833 & 936 \end{array}\right),\left(\begin{array}{rr} 120 & 323 \\ 697 & 222 \end{array}\right),\left(\begin{array}{rr} 167 & 0 \\ 0 & 951 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 946 & 947 \end{array}\right)$.
The torsion field $K:=\Q(E[952])$ is a degree-$5053612032$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/952\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 2023 = 7 \cdot 17^{2} \) |
$3$ | good | $2$ | \( 7514 = 2 \cdot 13 \cdot 17^{2} \) |
$5$ | good | $2$ | \( 26299 = 7 \cdot 13 \cdot 17^{2} \) |
$7$ | split multiplicative | $8$ | \( 7514 = 2 \cdot 13 \cdot 17^{2} \) |
$13$ | nonsplit multiplicative | $14$ | \( 4046 = 2 \cdot 7 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 52598z
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182a4, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{34}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{119}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{14}, \sqrt{34})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.17165310754816.4 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.40247960080384.4 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.83471431288752.4 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | ord | split | ord | nonsplit | add | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 9 | 1,1 | 1 | 2 | 1 | 1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.