Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-436x+3504\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-436xz^2+3504z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-436x+3504\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(10, 12)$ | $0.72315621652507726479868329569$ | $\infty$ |
| $(30, 132)$ | $2.1561811965757196209820077937$ | $\infty$ |
| $(12, 0)$ | $0$ | $2$ |
Integral points
\((-24,\pm 12)\), \((-4,\pm 72)\), \((10,\pm 12)\), \( \left(12, 0\right) \), \((14,\pm 12)\), \((30,\pm 132)\), \((37,\pm 195)\)
Invariants
| Conductor: | $N$ | = | \( 5248 \) | = | $2^{7} \cdot 41$ |
|
| Discriminant: | $\Delta$ | = | $335872$ | = | $2^{13} \cdot 41 $ |
|
| j-invariant: | $j$ | = | \( \frac{1118905056}{41} \) | = | $2^{5} \cdot 3^{3} \cdot 41^{-1} \cdot 109^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.14808748962827297996784807457$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.60282195597833443856748672368$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9714853832330738$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.484463626809153$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4752408447235350308161967291$ |
|
| Real period: | $\Omega$ | ≈ | $2.8471080215948942926357552512$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.2001700427968044725004573059 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.200170043 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.847108 \cdot 1.475241 \cdot 4}{2^2} \\ & \approx 4.200170043\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1024 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 7 | 13 | 0 |
| $41$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.21 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 656 = 2^{4} \cdot 41 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 575 & 8 \\ 164 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 649 & 8 \\ 648 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 648 & 653 \\ 487 & 654 \end{array}\right),\left(\begin{array}{rr} 376 & 3 \\ 645 & 2 \end{array}\right)$.
The torsion field $K:=\Q(E[656])$ is a degree-$1410662400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/656\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 41 \) |
| $41$ | split multiplicative | $42$ | \( 128 = 2^{7} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 5248.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{82}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.20992.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.11852100665344.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.318774099495092224.20 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.189633610645504.20 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | split | ord | ord |
| $\lambda$-invariant(s) | - | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 |
| $\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.