Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-34061004x+76486945680\)
|
(homogenize, simplify) |
\(y^2z=x^3-34061004xz^2+76486945680z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-34061004x+76486945680\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2770, 58240)$ | $1.0926004791404120838951671152$ | $\infty$ |
$(3420, 0)$ | $0$ | $2$ |
Integral points
\((2770,\pm 58240)\), \( \left(3420, 0\right) \), \((41445,\pm 8357895)\)
Invariants
Conductor: | $N$ | = | \( 52416 \) | = | $2^{6} \cdot 3^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $1711032926733437239296$ | = | $2^{23} \cdot 3^{6} \cdot 7^{3} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0390336823068597837859127139$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419133$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.856702535664275$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0926004791404120838951671152$ |
|
Real period: | $\Omega$ | ≈ | $0.14673829753571117148421137935$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot2\cdot3\cdot2^{3} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.6956640413967860342489007192 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.695664041 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.146738 \cdot 1.092600 \cdot 192}{2^2} \\ & \approx 7.695664041\end{aligned}$$
Modular invariants
Modular form 52416.2.a.fj
For more coefficients, see the Downloads section to the right.
Modular degree: | 4423680 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{13}^{*}$ | additive | -1 | 6 | 23 | 5 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 162 & 163 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 160 & 9 \end{array}\right),\left(\begin{array}{rr} 124 & 57 \\ 111 & 118 \end{array}\right),\left(\begin{array}{rr} 104 & 69 \\ 87 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 32 & 111 \\ 63 & 128 \end{array}\right),\left(\begin{array}{rr} 55 & 0 \\ 0 & 167 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 63 = 3^{2} \cdot 7 \) |
$3$ | additive | $6$ | \( 832 = 2^{6} \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 52416gn
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182a4, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.39969909374976.81 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.66588770304.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.156132458496.15 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.1023392268288.2 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | split | ord | split | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 2 | 3 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.