Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+207004x+12041106\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+207004xz^2+12041106z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+3312069x+773942870\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(374, 11715)$ | $2.3409417560201675545698877984$ | $\infty$ |
| $(75, 5252)$ | $3.1208456207506613052103955403$ | $\infty$ |
| $(-229/4, 225/8)$ | $0$ | $2$ |
Integral points
\( \left(75, 5252\right) \), \( \left(75, -5328\right) \), \( \left(374, 11715\right) \), \( \left(374, -12090\right) \), \( \left(1583, 64818\right) \), \( \left(1583, -66402\right) \), \( \left(2858, 153303\right) \), \( \left(2858, -156162\right) \)
Invariants
| Conductor: | $N$ | = | \( 52371 \) | = | $3^{2} \cdot 11 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-630873501565226931$ | = | $-1 \cdot 3^{18} \cdot 11 \cdot 23^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{9090072503}{5845851} \) | = | $3^{-12} \cdot 11^{-1} \cdot 2087^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1044211851819410928585529142$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.012632067116688598242446120166$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0376318384434067$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.448242783381347$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.6181086921364218468944750091$ |
|
| Real period: | $\Omega$ | ≈ | $0.17993812169080379317718613084$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.7634001888344392439211523054 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.763400189 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179938 \cdot 6.618109 \cdot 16}{2^2} \\ & \approx 4.763400189\end{aligned}$$
Modular invariants
Modular form 52371.2.a.a
For more coefficients, see the Downloads section to the right.
| Modular degree: | 540672 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $23$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6072 = 2^{3} \cdot 3 \cdot 11 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 6066 & 6067 \end{array}\right),\left(\begin{array}{rr} 6065 & 8 \\ 6064 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2023 & 1840 \\ 5980 & 1287 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2692 & 529 \\ 3335 & 2646 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2111 & 0 \\ 0 & 6071 \end{array}\right),\left(\begin{array}{rr} 2347 & 2346 \\ 3082 & 4003 \end{array}\right),\left(\begin{array}{rr} 2347 & 1288 \\ 3818 & 3405 \end{array}\right)$.
The torsion field $K:=\Q(E[6072])$ is a degree-$5416884633600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6072\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $6$ | \( 5819 = 11 \cdot 23^{2} \) |
| $11$ | split multiplicative | $12$ | \( 4761 = 3^{2} \cdot 23^{2} \) |
| $23$ | additive | $266$ | \( 99 = 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 52371e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 33a4, its twist by $69$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{759}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-69}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-11}, \sqrt{-69})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.179747005464576.3 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.8960471601147.2 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | ord | ord | split | ord | ord | ss | add | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | 5 | - | 2 | 2 | 3 | 2 | 2 | 2,2 | - | 2 | 2 | 2 | 2 | 2,2 | 2 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.